
Advanced Dice Parser using Regular Expression
Discord Bot Dice Commands used in Dungeons & Dragons 5th Edition

Shaffira Alya Mevia 13519083
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: alyameviia@gmail.com

Abstract—In the times of the COVID-19 pandemic, many
Tabletop Roleplaying Game (TTRPG), specifically Dungeons &
Dragons, players have moved into a popular chatting platform
Discord to continue playing. One of the main aspects of any
TTRPG is the dice. Discord’s user-supported chatbots are able to
parse specific dice commands to roll a dice virtually. This can be
done using regular expressions.

Keywords—dice parser; string matching; regex; discord;
chatbot; Dungeons & Dragons 5e;

I. INTRODUCTION

Written in the times of the COVID-19 pandemic, in order to
keep ourselves and others safe, we must maintain a physical
distance. Because of that, it is hard for people to meet each
other at this time. Including players from one of the most
popular Tabletop Top Roleplaying Game (TTRPG) Dungeons
& Dragons. They also suffered the consequences because they
are unable to meet each other to play when the entire premise
of the game is to meet on a table and play on top of the table.
Players started to get creative and continued playing
Dungeons & Dragons or D&D online. One of the popular
media to do so is via Discord because one of its prominent
features is the support of user-built chatbots.

The main aspect of a Dungeons & Dragons session or any
TTRPG is the dice, ranging from the common 6 sided dice to a
4 or 20 sided dice. In some cases, we also need to roll an
“imaginative” 100 sided dice typically for a roll table or a way
for the Dungeon Master to measure the success rate of the
player’s action. Commonly this is done with the user typing a
message with the ‘XdY’ format or something similar to it. On
the dice format before, X means how many dice are present
while Y means how many sides does the dice have. For
example, a ‘1d20’, a common dice used in Dungeons &
Dragons sessions, means one dice with 20 sides. From here
the chatbot then parses the message and executes the rolls.
One of the ways user input can be parsed is with Regular
Expressions.

II. THEORETICAL FRAMEWORK

A. Pattern Matching
The pattern matching algorithm is a collection of algorithms

used to test an expression to determine if it has certains
characteristics. Pattern matching is one of the fundamental
steps in processing texts and/or images. Pattern matching has
many applications such as search features in a text editor,
search engines, or web applications, fingerprint analysis,
bioinformatics, and many more.

Pattern matching algorithms can be divided into a couple of
categories, single-pattern matching algorithms, infinite-set
pattern matching algorithms, and many more. The
Knuth-Morris-Pratt algorithm and Boyer-Moore algorithm can
fall into either a single-pattern algorithm or infinite-set
algorithm. Another pattern matching algorithm example is the
naive-search algorithm by implementing the brute force
algorithm.

There is also a finite-state-automaton search algorithm that
is a search based on the deterministic finite automaton
machine. Deterministic finite automaton is a machine that
accepts or rejects an input by iterating all of the characters
with each of the accepted characters will change the machine’s
state depending on the transition arrow that corresponds to the
accepted character before. Deterministic means that there is
only at maximum one transition arrow that the character can
take to each state. One example of pattern matching or search
using the finite-search-automaton is regular expression, where
the regular expression’s syntax each explains the transition
arrow of the finite-search-automaton machine.

B. Regular Expression (Regex)
Regular expression or sometimes referred to as regex or

RegExp is a sequence of characters that specifies a search
pattern. It can help you to match, locate, and manage a text
which will now be referred to as strings. Formally, regex is a
way for algebra to express languages that can be defined
recursively.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

Image 1 Regular Expression Structure (Source: [4])
The regular expression algorithm uses regular language or a

collection of strings that can be expressed with regular
expression or can be processed by a
deterministic-finite-automaton machine. Formally, regular
language is from the alphabet Σ following a set of rules as
follows recursively.

a. An empty language is notated by the Ø symbol. A
language that can have an empty string that is notated
by {ε} is regular language.

b. For every x, where x ∈ Σ or x is a part of Σ, a
singleton language that is notated by {x} where this
feature can only belong to a regular language.

c. If A and B is a regular language, then a union
between A and B or can be notated with A ∪ B, a
concatenation between A and B or can be notated
with A • , and a Kleene star from A or A* are also
defined as a regular language.A Kleene star from a
string A is a combination of all iterations from the
string A.

d. There are no other languages of Σ that are considered
as a regular language.

Other than regular language, a regular expression has to
also follow the regular grammar. A regular grammar is a
mathematical object G with four main components N, Σ, P, S
that can be notated as G = (N, Σ, P, S) according to the
following.

● N is a non-terminal set symbol, where all other
symbols that can be derived from this symbol are not
empty.

● Σ is a terminal set symbol, where there are no other
symbols that can be derived from this symbol.
Another name for this set symbol is an alphabet.

● P is a set from derived rules and grammars, where all
rules have a form such as below.

○ A → aB, where aB is derived from A and
aB is a concatenation from a and B

○ A → a
○ A → ε, for A, B ∈ N

● S is the starting symbol or character

Regular expression uses special characters to match strings.
The special characters can be classified as common tokens,
general tokens, anchors, meta sequences, group constructs,
character classes, flags or modifiers, and substitution. Below
are some of the basic syntax used in regular expressions.

Character Matches

^ Matches beginning of string

$ Matches end of string

. Match any character

(...) Capture anything matched

(?:...) Non-capturing group

[...] Matches anything contained

[^...] Matches anything not contained

\ Escape character

\d Any digit character or [0-9]

\w Any alphanumeric character or [A-Za-z0-9_]

\s Any whitespace character

* Zero or more occurrences

+ One or more occurrences

? Zero or one occurrence

{x} x occurrences

{x,} x or more occurrences

{x,y} x to y occurrences

Regex works by comparing the regex pattern to a targeted
string. For example, we want to match ‘eggs’ from a string ‘I
bought a dozen of eggs today’. We can use a regex ‘/eggs/’ to
get the eggs.

Not only from the patterns, but a regex engine can also use
flags to modify the search. For example, in ECMAScript
(JavaScript) we can use the /g flag to instruct the engine to not
stop after the first match has been found or the /i flag to match
with case insensitivity. Some flags can be used in a regex
engine.

C. Discord API with discord.js
API or Application Programming Interface is a collection of

routines, protocols, and tools used to build software
applications. An API specifies how software components
interact and are used when programming GUI components.
For example, inside the operating system lies an API that
allows us to copy and paste information in the form of text or
images from one application to another that is not really
flexible to one another. API’s initial usage was designed as a
method to interact between one application to another

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

application. As the time passes, the use case for an API has
slightly changed because of how programs and applications
are now in different types of environments. A popular form of
an API is RESTful API that can make all kinds of API flexible
in all sorts of environments.

Discord provides developers APIs that are based around an
HTTPS/REST API for general operations and a persistent
secure WebSocket-based connection for sending and
subscribing to real-time events. The most common use case is
providing service or access to a platform through the OAuth2
API. While developers can directly access the Discord API,
sometimes developers also use modules for easy interaction
with the Discord API. Some popular API wrappers and
modules include the discord.py for Python, discord.js for
Node.js, JDA or DiscordPHP for Java. Inside the Discord
Developer Portal, developers can create many applications
that are not limited to just creating Discord bots. Another
feature is for server moderators to check their server’s
insightful analytics about the community to check member
engagement and server growth rate.

Discord.js module uses an object-oriented approach with
predictable abstractions. Currently there are around 229
million downloads or users using this module with around 100
developers contributing on this active and growing project. At
the time of writing, the latest version of discord.js is 12.5.3
that is updated around April 2021.

III. IMPLEMENTATION

The dice parser is implemented inside an ongoing Discord
bot project called SapicowBot.

A. Regex Search Pattern
There are several regular expressions used in SapicowBot’s

dice parser. To understand the pattern, first, we must address
the common dice format used in text-based dice. The most
common ones are the ‘XdY’ and either ‘XdYkhZ’ or
‘XdYklZ’. The first one means there are X amounts of Y-sided
dices. While the second one means, from X amounts of
Y-sided dices keep Z highest (kh) or lowest (kl) results.
Example usage of the format is ‘1d20’, meaning it is a 20
sided dice and ‘2d20kh1’, meaning it will take 1 highest result
from 2 dices with 20 sides. In addition to that, we can add
modifiers to the dice roll’s result. For example in an ongoing
Dungeons & Dragons session, the player is asked by the
Dungeon Master to roll a Perception check. The player has a
+5 modifier for the Perception skill. So the player will roll a
‘1d20+5’ dice. This can result in for example the ‘1d20’ gives
a 5 then the player’s Perception check result is 5+5 or 10.

SapicowBot’s dice parser is inspired by another Discord bot
called Avrae. Below is a list of operators SapicowBot’s dice
parser can read.

● k, refers to keep
● p, refers to drop
● ro, refers to reroll once
● rr, refers to reroll infinitely
● mi/ma, refers to the minimum or maximum result
● e, refers to explode dice of value
● ra, refers to reroll and add

SapicowBot’s dice parser consists of several main regular
expressions that will be explained below.

1. Main Parser

/((adv|dis|advantage|disadvantage|disadv)|(
?!\d+)(?=#)\s*(.*$)|\s*(\d+\s*d\s*\d+)\s*((
(k|p|ro|rr|mi|ma|e|ra)(h|l|))\s*(\d+|)|)|(?
=([\+\-*\/<>]*))\s*(\d+)|([\+\-*\/<>]*))/
gi

Below is an explanation of the regex pattern above. Each
alternative is placed in front of each other based on the pattern
priority.

a. First Alternative

(adv|dis|advantage|disadvantage|disadv)

This pattern is used to handle advantage and disadvantage
options when rolling the dice. For every alternative inside the
capturing group will do an exact matching for the targeted
string.

b. Second Alternative

(?!\d+)(?=#)\s*(.*$)

This pattern is used to handle comments that the user
provides. The first part of the pattern or (?!\d+) is a negative
lookahead. It will assert that the insides of the negative
lookahead or \d+, matches a repeating digit with a minimum
of one occurrence, does not match. This makes sure that the
comment section is not part of the dice format.

The second part of the pattern or (?=#) is a positive
lookahead, which means that it will assert the string with the
occurrence #.

The third part of the pattern or \s* will match every
whitespace character ranging between zero and unlimited.
This is used to handle if the user types space between the #
and the comment itself.

Lastly is the pattern (.*$) that will capture every character
with the occurrences of zero to unlimited until the end of the
string. An example string that can match is ‘# Insight Check’.

c. Third Alternative

\s*(\d+\s*d\s*\d+)\s*(((k|p|ro|rr|mi|ma|e|r
a)(h|l|))\s*(\d+|)|)

This pattern is used to handle the dice formats itself. Any
\s* that appears on the regex pattern is used to handle any
whitespace leaks that the bot might encounter. The first main
part of the pattern or (\d+\s*d\s*\d+) is a capturing group
that will match one or more occurrences of a digit character
between a d character. For example, this pattern will handle
strings such as ‘1d20’, ‘2d20’, or ‘4d4’.

The next main part of the pattern or
(((k|p|ro|rr|mi|ma|e|ra)(h|l|))\s*(\d+|)|)
is a capturing group consisting of several alternatives that are

used to handle the operators that can be used. These operators
are optional to be used. After the operators are present, a

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

number detailing the operator must be present for several
operators hence the (\d+|) pattern.

d. Fourth Alternative

(?=([\+\-*\/<>]*))\s*(\d+)

This pattern is used to handle modifiers that are used on the
dice. The first part of the pattern or (?=([\+\-*\/<>]*))
is a positive lookahead which will assert that the string will
have [\+\-*\/<>]* before the modifier or \d+ which is
captured by a capturing group.

e. Fifth Alternative

([\+\-*\/<>]*))

This pattern is used to capture any mathematical operators
that appear on the string.

The main parser regex pattern uses a global modifier flag
(/g) which matches all or does not return until the first match
is found and a case insensitive flag (/i).

2. Operators and Selectors

/(?<=\d+)(d|(k|p|ro|rr|mi|ma|e|ra)(h|l|))(?
=\d+)/gi

This regex will search for operators and selectors only. This
is done by checking if there are numbers in front and behind
the operators and selectors using a positive lookbehind
(?<=\d+) and lookahead (?=\d+).

The operators and selectors regex pattern uses a global
modifier flag (/g) which matches all or does not return until
the first match is found and a case insensitive flag (/i).

3. Mathematical Operators
/[\+\-*\/<>]/g

This regex will handle any mathematical operators that
appear on the string. The mathematical operators’ regex
pattern uses a global modifier flag (/g) which matches all or
does not return until the first match is found

B. Dice Parser Algorithm
The dice parser works by splitting the string using the

regex. Below is the pseudocode for the dice parser algorithm.

Function diceParser(str)
// Main Parsing
separated = match str with mainParserRegex
filter separated from an undefined and empty string

// Whitespace Checker
whitespace = []
If separated[0] has white space(s)

For i = 0 to separated.length
If separated[i] does not have '#'

replace all white space with empty string
Endif

Endfor
Endif
If whitespace.length > 0

separated = whitespace
Endif

// Splitting
result = []
For i = 0 to separated.length

If separated[i] does not match mathOpsRegex and
matches operatorSelectorRegex

char = []
newArr = []
arr = split separated[i] with operatorSelectorRegex
filter arr from undefined and empty string
For j = 0 to arr.length

If arr[j] matches alphabetRegex
push arr[j] to char

Else
push arr[j] to newArr

Endif
Endfor
If char.length > 0

push joined char with empty string delimiter to
newArr

Endif
push newArr to result

Else
If separated[0].length > 0

push separated[0] to result
Endif

Endif
Endfor
filter result from empty array or empty string

return result
Endfunction

Fig. 1 Dice Parser Pseudocode
Based on the pseudocode, the regexes are used both to

match and split the string. The result will be an array already
separated by operators and dice formats. For example, we will
use the string below to demonstrate.

2d20+1d4+2d20kh1+4d20kl2+5+4d6mi2+2d6e6+10d6ra6+
4d6ro<3-1d20k1 adv # Insight check

The dice parser will start to parse based on the pseudocode
and returns an array as follows.

[
["2", "20", "d"], "+",
["1", "4", "d"], "+",
["2", "20", "1", "dkhkh"], "+",

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

["4", "20", "2", "dklkl"], "+",
"5", "+",
["4", "6", "2", "dmimi"], "+",
["2", "6", "6", "dee"], "+",
["10", "6", "6", "drara"], "+",
["4", "6", "droro"], "<",
"3", "-",
["1", "20", "1", "dkk"],
"adv", "# Insight check"

]

This result array will then be sent to the dice
implementation algorithm. The dice implementation will read
the result and starts to generate the random numbers according
to the dice formats. After the numbers are generated, it will be
sent back to the user via the Discord API.

C. Pattern Matching Results
Below are some test cases used to test the regular

expressions.
1. Normal roll

The first test is rolling a common dice used in a Dungeons
& Dragons session, a 20 sided dice. Rolling a 20 sided dice
can be caused by various actions but in this case the player is
asked to roll a perception check. Based on the player’s
character’s statistic, for a perception check it does not come
with a modifier or a +0 modifier.

Image 2 Normal perception check without a modifier

The second test is rolling a high number of n-sided dice.
Sometimes a 1d100 is used to roll a roll table. In Dungeons &
Dragons 5th Edition’s Wild Magic Sorcerer’s subclass, players
sometimes have to roll a Wild Magic surge to determine what
effects take place when a Wild Magic surge occurs to the
player’s character.

Image 3 Wild Magic Surge Table

2. Keep roll with modifier
Based on the player’s character’s statistics, some skills will

have a modifier depending on the character’s ability score. In
this condition, the character encounters something that makes
their character have an advantage on this skill check.

Image 4 Keep high roll with modifier

3. Random advanced roll
Although this is not a common use case for the typical

Dungeons & Dragons session or any TTRPG sessions in
general, the dice parser can still parse and print results from
these random dice rolls with several mathematical operators
included.

Image 5 Random advanced roll

IV. CONCLUSION

Reasons why some Dungeons & Dragons players come to
Discord to play is because of the support user-built chatbots.
Some specific Dungeons & Dragons supported chatbots have
the ability to roll dice which is something that is hard to do so
when playing an online session if players were to use real
dice. While there are multiple ways a dice can be parsed,
SapicowBot’s dice parser uses regular expressions. Based on
the test cases, regular expression is one of the most powerful
and efficient technologies for pattern matching, specifically in
the case of parsing a dice format. Although the regular
expressions used in this paper could be better improved, this is
already enough to successfully parse an advanced dice format.

VIDEO LINK AT YOUTUBE

A video demonstrating and explaining the dice parser can
be accessed via this link (https://youtu.be/lcJkG-kuNI8).

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

https://youtu.be/lcJkG-kuNI8

ACKNOWLEDGMENT

First, the author would like to thank God Almighty for
giving the strength, knowledge, ability, and opportunity to
finish this paper. The author would also like to thank the IF211
Strategi Algoritma team, specifically Dr. Nur Ulfa Maulidevi,
ST, M.S, as the author’s class lecturer. In addition, the author
also thanks the Flumphs & Friends D&D 5e community on
Discord for letting the permission to survey the server and
Wonderers of Waterdeep community for bug testing and
giving feedback to the dice parser feature.

REFERENCES

[1] Munir, Rinaldi. (2020). Pencocokan String (String/ Pattern Matching).
IF2211 Strategi Algoritma - Semester II Tahun 2020/2021.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencoc
okan-string-2021.pdf

[2] BillWagner et al. (2021, April 26). Pattern matching overview.
Microsoft Docs.
https://docs.microsoft.com/en-us/dotnet/csharp/pattern-matching

[3] Computer Hope. (2020, December 31). Regex. Computer Hope.
https://www.computerhope.com/jargon/r/regex.htm

[4] Beal, Vangie. (2021, April 9). API (Application Program Interface)
Meaning & Definition. Webopedia.
https://www.webopedia.com/definitions/api/

[5] Discord. (2021). API Reference. Discord Developer Portal.
https://discord.com/developers/docs/reference

[6] DiscordJS. (2021). Welcome | discord.js. DiscordJS.
https://discord.js.org/#/docs/main/stable/general/welcome

[7] d20. (2021). Dice Syntax. d20.
https://d20.readthedocs.io/en/latest/start.html#dice-syntax

[8] Regex101. (2021). Regular Expression. Regex101.
https://regex101.com/

[9] Team, W. R. (2014). Player’s Handbook (Dungeons & Dragons)
[E-book]. Wizards of the Coast.

[10] Sipser, Michael (1998). "Chapter 1: Regular Languages". Introduction to
the Theory of Computation. PWS Publishing. pp. 31–90. ISBN 978-0-
534-94728-6.

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 26 April 2021

Shaffira Alya Mevia
13519083

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

